

ENCODING ALGORITHM FOR CROSSTALK EFFECT MINIMIZATION USING ERROR

CORRECTING CODES

SOUVIK SINGHA
1
 & G. K. MAHANTI

2

1
Department of Computer Science & Informatics, Bengal Institute of Technology and Management, Santiniketan,

West Bengal, India

2
Department of Electronics and Communication Engineering, National Institute of Technology, Durgapur,

West Bengal, India

ABSTRACT

In this paper we present an analysis of crosstalk effects on buses implementing error correction codes. Crosstalk

between adjacent wires on the bus may create a significant portion of delay with increasing die size and shrinking wire

dimensions. Wires are becoming longer and more resistive and at the same time clock frequencies are rising. If two

adjacent wires have simultaneous rising transition, both transitions speed up and a hold violation is possible. Similarly a

rising transition on one wire can cause a neighboring wire to falsely transit and lead to a logic fault. In particular, we

present an implementing error correcting codes for analysis of crosstalk effects on buses using hamming single error

correcting codes. We give algorithms for generating optimal bus encodings and provide a general construction method for

a practical class of codes using extra one even parity bit. Encoding and decoding circuits are given for specific codes. We

first report the results of an analysis and then using hamming single error correcting codes to reduce the interference in

DSM buses.

KEYWORDS: Bus Encoding, CODEC Algorithm, Error Correction, Parity Check Code, Single Error Correction

INTRODUCTION

With the development of VLSI technology day by day, the crosstalk avoidance code reduces the coupling

capacitances and hence results in minimization of crosstalk. Crosstalk induces delay, power dissipation, and improvement in

signal integrity. When crosstalk avoidance codes are combined with error detecting and correcting codes then signal

integrity is improved. With dramatic shrinking of feature size, global buses in deep submicron system-on-chip designs are

suffering from high power consumption and large propagation delay. In particular, the propagation delay through long cross-

chip buses is already proving to be a limiting factor in the speed of some designs. It has been shown that the delay through a

long bus is strongly a function of the coupling capacitance between the wires [1, 2, 3 and 4]. When the cross-coupling

capacitance is comparable to or exceeds the loading capacitance on the wires, the delay of such a transition may be twice or

more that of a wire transitioning next to a steady signal. We call this delay penalty the “crosstalk” delay. In some high-speed

designs where cross-talk delay would have limited the clock speed, the technique of shielding was used. Other methods

include increasing wire spacing to reduce the coupling capacitance or increasing wire widths to reduce the ratio of coupling

to ground capacitance [4, 5, 6]. The shielding methodology used today is passive in that shield wires are tide statically to

ground. The self- shielding codes can be further divided into two categories, memory-less and memory-based [1, 7 and 8].

The memory-based coding approaches generate a codeword based on the previously transmitted code and the current data

word to be transmitted. On the receiver side, the data is recovered based on the received codeword. The memory less coding

approaches use a fixed code book to generate a codeword to transmit based on the input data. A more useful approach would

International Journal of Electronics and

Communication Engineering (IJECE)

ISSN 2278-9901

Vol. 2, Issue 4, Sep 2013, 119-130

© IASET

120 Souvik Singha & G. K. Mahanti

guarantee a best-case switching scenario for a wire. The concept of active shielding uses shields on either side of the wire

that helps to speed up signal propagation delay [8, 9, 10]. To satisfy the delay constraints and guarantee signal integrity

several techniques have been proposed, the most common practices consist in inserting repeaters [7, 9 and 16] and shielding

the bus wires [13], both active and passive shielding [13, 14] , signal encoding to minimize conflicts [13, 15]. Other

techniques have been proposed that rely on bus encoding to prevent crosstalk -induced delay [15]. To face the problem of

possible logic errors due to crosstalk, a fault-tolerant bus can be employed. Alternately, error correcting codes can be

implemented [12, 13 and 17]. Crosstalk avoidance codes can be used to reduce the effective coupling capacitance of a wire

segment. It is needed to incorporate error correcting codes. There are a few joint crosstalk avoidance codes (CAC) and single

error correction (SEC) codes [17, 18]. The single error correcting codes are Duplicate- add- parity, Modified Dual Rail

(MDR) codes used to reduce the crosstalk [18, 19].In some recent research bus coding technique has been focus. DAP

(Duplicate Add Parity), MDR (Modified Dual Rail), DAPBI (Duplicate Add Parity Bus Inverter), and BSC (Boundary Shift

code), are all various cross talk avoidance single error correction in on- chip DSM technology in VLSI interconnects

[1,12,13]. The multiple error correcting coding techniques are used in network on- chip methodology and NoC can be

incorporated multi core SoC [13]. Bus encoding techniques to eliminate crosstalk classes 5 and 6 have been proposed in

[3,10]. Recently, delay and energy efficient bus encoding schemes have been proposed in [2,17]. Conversely, other bus

encoding techniques have been used to prevent crosstalk but do not correct errors [3,10, 17]. Another cross- talk avoidance

in DSM busses detect and correct error that overhead large number of additional wires causing high delay

(32- bit line requires 65 lines).

In this paper we analyze the ability of the error correcting codes to limit the crosstalk fault impact on system

performance while maintaining the same error correcting ability. We provide algorithms for generating optimal bus

encoding codes which is more efficient and minimizing encoding and decoding circuits are given for specific codes. We

recall the general scheme for fault-tolerant buses and some basic properties of error correcting codes [1]. First we analyze

the ability of single error correcting codes to alleviate crosstalk effects on bus wires, obtained by simply adding one extra

even parity check bit. In the next phase we have provided a (7, 4) optimal Hamming code for error detection and correction.

In section 2 an overview has been done for error detecting and boundary shift codes. Section 3 presents a new single error

correcting coding algorithm using an extra even parity. Section 4 extends error detection and correction by using optimal

(7, 4) Hamming code. In section 5 an efficient encoder/decoder circuit has been proposed that is being minimized.

ERROR DETECTING CODES (EDC) AND BOUNDARY SHIFT CODES (BSC)

This section provides error detecting codes and boundary shift codes for single error correction.

Error Detecting Codes

Self-checking circuits are one of the basic building blocks of fault tolerant systems. Fault tolerance on a bus can be

implemented using error detecting or correcting codes .Hamming code can be successfully used to detect and correct

bidirectional errors affecting bus lines. A code is self- shielding if it does not allow invalid transition. This is possible if the

codeword in the code book have a large enough Hamming distance between them. In general, if the minimum hamming

distance between any two codeword is d, then we can either correct up to

2

1d errors, or detect up to [d-1] errors [1]. A

binary code is linear if the bitwise sum (mod 2) of any two codeword is also a codeword. Victor et al. [2] used a graphical

model to represent these constraints. All n bit words are represented by a vertex in the graph with edges between two

vertices if transitions between the corresponding words are valid. A memory less self- shielding code consists of a set of

Encoding Algorithm for Crosstalk Effect Minimization Using Error Correcting Codes 121

vertices forming a clique that is a set of vertices with edges between every pair in the set. Properties of the graphs for these

codes can be used to obtain a formula for the size of the largest clique for general n [2]. The encoding and decoding

operations introduces a delay, for instance estimate in terms of numbers of gates, which depends on the code structure and

on its error correction capability, which influence the encoding /decoding circuitry complexity.

Boundary Shift Codes

Boundary Shift Code is an invalid transition technique, which represents a transition from one codeword to another

so the adjacent bits are changed in opposite directions. This results in the worst case coupling capacitance [1,2]. For example

code 01100011 and code 11011010 would be an invalid transition.

A code is self-shielding if it can avoid transition [2]. The dependent boundary is place where two adjacent bits

differ and are denoted by the leftmost bit position in the codeword. For example the code 11001110 and 01100111 are

having dependent boundary of (2,4,7) and (1,3,5) respectively. The BSC is based on the fact that no overlapping dependent

boundary sets form an invalid transition and one bit circular shift converts the code with odd dependent boundary and vice

versa.

So by alternation self- shielding codes between the codes is generated. Even dependent boundary is used to

duplicate the data word in BSC and then to send the duplicate codeword along with the parity bit with self- shielded

transmitted data. The decoder is similar to the DAP decoder with additional multiplexer array to generate the non- circulated

code word [1, 7, 15].

If a codebook has codeword only even dependent boundaries, then performing a 1- bit circular right shift yields a

new codebook with no even dependent boundaries. Since the two codeword share no dependent boundaries, we can alternate

between the two to obtain a self- shielding code. We call this a boundary shift code.

CODING ALGORITHM

The proposed coding algorithm uses a fixed code book in memory less self- shielding code. This results a valid

transition between any two codeword. This has been modeled graphically which is shown in figure 2. The model easily

generalizes for the additional constraints. For example, the following codeword contains an invalid transition by bit 1 and

bit 2:

1011 C

1102C

In our approach we would like the minimum Hamming distance between any two codeword to be at least d,

(d = 2). We can add the constraints to the model by only placing edges between any two vertices of corresponding word

satisfying the Hamming distance constraints in addition to the valid transition condition. Here n = 2, so we add extra one

even parity bit to satisfy minimum Hamming distance constraints. Table 1 depicts this.

Table 1

Dataword Codeword

00 000

01 011

10 101

11 110

122 Souvik Singha & G. K. Mahanti

Figure 1 shows such a graph for a single error detecting (d = 2), self – shielding code with three wires. Here we use

an algorithm that determines if a clique of size k exists in the graph.

Figure 1: Graphical Representation of Single Error Detecting 3- Bit Self Shielding Codes

Algorithm for Code with Memory

In code with memory, the code book can be a function of previously transmitted codeword. For this case we use

two graphs.

Step 1: Consider any vertex of graph G1 having n bit word and an edge between two vertices forming a valid

transition.

Step 2: Consider any vertex of graph G2 having n bit word and an edge between two vertices having Hamming

distance greater than d-1.

Step 3: To find self- shielding minimum distance d code with rate log2 M, each codeword must be able to transit a

size M subset of codeword that are at least a Hamming distance d apart from each other. We can determine

if such a code exists by the following steps.

Encoding Algorithm for Crosstalk Effect Minimization Using Error Correcting Codes 123

Step 4: To determine maximum clique of the graph a binary variable is assigned with each vertex in the graph to

denote an edge is the member of clique or not.

Step 5: Find the sum of all binary numbers in clique and the greatest sum will become the maximum clique.

CODING TECHNIQUE AND ERROR DETECTION

In this section, we analyze the impact of single error correcting codes on crosstalk induced bus delay. For this

analysis, we have considered one method for transforming 4 bit of data into a 7 bit Hamming codeword, i.e. we have to use

7 × 4 generator matrix G. The generator matrix maps the data bits to codeword. In previous section the proposed algorithm

finds maximum- rate codes but not encoders or decoders for them. Here we construct a class of practical codes with

necessary circuits.

We first define the 4-bit data D to be 1 × 4 vector [D1 D2 D3 D4]. Then we create a 4 × 7 generator G such that the

product (modulo 2) of the D and G is the desired 1 × 7 Hamming codeword. Each data bit is represented as given below:

Our (7, 4) Hamming code defines parity bits p1, p2, and p3 as

P1 = D1 D3 D4

P2 = D1 D2 D4

P3 = D1 D2 D3

We represent each parity bit with a column vector containing a 1 in the row corresponding to each data bit

included in the computation and a zero in all other rows. This is given below:

Now to create a generator that produces code words with the bits ordered D1, D2, D3, D4, P1, P2, P3

(4 data bits followed by 3 parity bits) use the vectors from the previous steps and arrange them into the following columns

[D1 D2 D3 D4 P1 P2 P3]

The result is following 4×7 generator matrix:

0111000

1010100

1100010

1110001

G

Thus, we can encode any data value to create the codeword using the Hamming code defined by the matrix G. To

decode the Hamming code defined by matrix G the first step is to check the parity bits to determine if there is an error. For

this a 3×7 parity check matrix H is constructed such that row 1 contains 1s in the position of the first parity bit and all of

the data bits that are included in its parity calculation. Row 2 contains 1s in the position of the second parity bit and all of

124 Souvik Singha & G. K. Mahanti

the data bits that are included in its parity calculation. Row 3 contains 1s in the position of the third parity bit and all of the

data bits that are included in its parity calculation. The parity check matrix is given below:

1000111

0101011

0011101

H

Multiplying the 3×7 matrix H by a 7×1 matrix representing the encoded data produces a 3×1 matrix called the

syndrome. If the syndrome is all zeros, the encoded data is error free. If the syndrome has a non-zero value, flipping the

encoded bit that is in the position of the column in H that matches the syndrome will result in a valid codeword. The

following figure 3 depicts the parity check circuit for all the data bits and parity bits that are included in the parity

calculation.

Figure 2: Parity Check Circuit

ENCODER AND DECODER CIRCUIT MODELS

Figure 3 and Figure 4 shows a circuit diagram of an encoder and decoder that can implement error correcting code.

The implementation of encoder and decoder is done by using boundary shift code. Two adjacent bits are same and they are

denoted by the left most bit of the boundary. Two code words 01100111 and 11001110 have dependent boundaries {1, 3, 5}

and {2, 4, 7}, respectively. Since there is no overlap transition must be valid. Design of encoder and decoder is based on

boundary shift coding is shown in figure 1. A 4-bit data X0, X1, X2, X3 , when encoded using boundary shift coding method

duplicates all the bits, shifts and adds parity bits to the data bits, and hence the 9-bit codeword

{Y0,Y1, Y2, Y3,Y4, Y5, Y6, Y7, Y8} is generated. This 9-bit code is transmitted and at the receiver end decoder is used to decode

9-bit code into 4-bit data just opposite to encoder. Patel et al. [1] use a clock circuit with an inverter to take the select line;

Encoding Algorithm for Crosstalk Effect Minimization Using Error Correcting Codes 125

there is no requirement to include the clock circuit. From the result of input/output characteristic we found that output

Y0 and Y1 both are giving same results, which is similar to input X0. So in encoder circuit we take S to be always 0 and

Y0, Y1 are directly connected to X0 without multiplexer. In decoder circuit diagram here we take S = 1 for getting

the X0 there is required only one multiplexer. So we conclude that our proposed encoder - decoder circuit diagram is

minimized to previous work and get same results.

Figure 3: Encoder Circuit Based on Error Correcting Coding Method

126 Souvik Singha & G. K. Mahanti

Figure 4: Decoder Circuit Based on Error Correcting Coding Method

Using an extra one bit even parity check code in the above construction gives an infinite class of single error

correcting codes. In Table 2 and Table 3 we compare the rates of these codes to the optimal rates. This performance is better

than that of the optimal memory-less code. Since the codes constructed are based on very simple error-correcting codes, they

can be encoded and decoded efficiently.

a

b

S

0 1

2:1

MUX

0 1

2:1

MUX

0 1

2:1

MUX

0 1

2:1

MUX

Y0 Y1 Y2 Y3

Y4

X0 X1 X2 X3

c

s

1 0

 2:1

 MUX

1 0

 2:1

 MUX

1 0

 2:1

 MUX

1 0

 2:1

 MUX

a
b

Y8 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

X0 X1 X2 X3

Y5

X0 X1 X2 X3

c

s

1 0

 2:1

 MUX

1 0

 2:1

 MUX

1 0

 2:1

 MUX

1 0

 2:1

 MUX

a
b

Y8 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

X0 X1 X2 X3

Y6

Y7

X0 X1 X2 X3

c

s

1 0

 2:1

 MUX

1 0

 2:1

 MUX

1 0

 2:1

 MUX

1 0

 2:1

 MUX

a
b

Y8 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

X0 X1 X2 X3

Y8

c

X0 X1 X2 X3

1 0

2:1

MUX

1 0

2:1

MUX

1 0

2:1

MUX

1 0

2:1

MUX

Encoding Algorithm for Crosstalk Effect Minimization Using Error Correcting Codes 127

Table 2: Single Error Correcting Encoder Output

Input Output

x0 x1 x2 x3 y0 y1 y2 y3 y4 y5 y6 y7 y8

1 0 1 0 1 1 0 0 1 1 0 0 0

0 1 1 1 0 0 1 1 1 1 1 1 1

1 0 0 0 1 1 0 0 0 0 0 0 1

0 1 0 0 0 0 1 1 0 0 0 0 1

0 1 0 1 0 0 1 1 0 0 1 1 0

1 0 1 1 1 1 0 0 1 1 1 1 1

Table 3: Single Error Correcting Decoder Output

Input Output

y0 y1 y2 y3 y4 y5 y6 y7 y8 x0 x1 x2 x3

1 1 0 0 1 1 0 0 0 1 0 1 0

0 0 1 1 1 1 1 1 1 0 1 1 1

1 1 0 0 0 0 0 0 1 1 0 0 0

0 0 1 1 0 0 0 0 1 0 1 0 0

0 0 1 1 0 0 1 1 0 0 1 0 1

1 1 0 0 1 1 1 1 1 1 0 1 1

SIMULATION RESULTS

The simulation has been done on Xilinx ISE 8 tools and the result is verified. Simulated results show that when

both the circuits are simulated in same environment then proposed technique gives results without cross talk interference.

This is also demonstrated in Table 2 and Table 3.

We found reduction in crosstalk delay and also reduction in crosstalk noise in Figure 4 and Figure 5 in comparison

with Reference [1]. This method also reduces chip area by reducing number of logic gates and multiplexer in comparison

with Patel et al.

Figure 5: Simulation Results of Proposed Encoder

128 Souvik Singha & G. K. Mahanti

Figure 6: Simulation Results of Proposed Decoder

CONCLUSIONS

In this paper we have presented an analysis of crosstalk effects implementing error correcting coding technique. We

have shown that the redundancy introduced by error correcting codes can be exploited in order to avoid the worst case

crosstalk induced delay. The proposed method almost removes the worst-case inductive crosstalk using boundary shift

encoding method. These codes are derived from conventional error-correcting codes, for the specific case of single error

correcting boundary shift codes we give gate level encoding and decoding circuits. This method also reduces the chip area,

propagation delay and the circuit is very simple to implement.

REFERENCES

1. Patel, K.N, Markov, I.L, “ error- correction and and crosstalk avoidance in DSM busses,” in IEEE transactions on

very large scale integration (VLSI) systems, Oct. 2004, Volume 12, Issue10, pp 1076-1080.

2. C. metra, M. Favalli, and B. Ricco. “ online detection of logic errors due to crosstalk , Delay, and Transient

Faults. In proc. of IEEE int. Test Conf., pp 524-533, 1998.

3. B. Victor and K. Keutzer. “ Bus encoding to prevent crosstalk delay”. Proc. IEEE/ACM Intl. Conf. On Computer

Aided Design, Nov. 2001, pp.57-69.

4. A. Vittal and M. Marek-Sadowska, “ Cross talk Reduction for VLSI,” IEEE Trans, Computer-Aided Design,

Vol. 16, no. 3, 1997.

5. M. Favalli and C. Metra, “Bus crosstalk fault-detection capabilities of error-detecting codes for on-line testing”.

IEEE Trans. On VLSI Systems, sept. 1999. Pp 392-396.

6. P.K.Lala, “Self-Checking and Fault-Tolerance Degital Design”. Academic Press, Inc, 2001.

7. K. Hirose and H. Yasuura, “A bus delay reduction technoque considering crosstalk”. Proc. Design, Automation

and Test in Europe Conf. and Exhibition 2000, pp. 441-445.

Encoding Algorithm for Crosstalk Effect Minimization Using Error Correcting Codes 129

8. D. Bertozzi, L. Benini, and B. Ricco,”Energy-efficient and reliable low-swing signaling for on-chip buses based

on redundant coding”. Proc. IEEE Intl.Symp. on circuit and systems, 2002. pp. 93-96.

9. Duan. C, Cordero. V and Khatri. S.P, “Efficient On-Chip crosstalk avoidance CODEC Design”‟ IEEE

Transactions on VLSI Systems, April 2009, pp 551-561.

10. C. Duan, A. Tirumala, and S. p. Khatri, “ Analysis and avoidance of cross-talk in on-chip buses. Hot

Interconnects 9, Aug 2001. Pp. 133-138.

11. T. Gao and C. L. Liu. “ Minimum crosstalk channelrouting”. Proc. IEEE/ACM Intl. Conf. On computer Adided

Design, Nov. 1999. pp. 692-696.

12. P. Sotiriadis and A. Chandrakasan, „Bus energy minimization by transition pattern coding (TPC) in deep

sub-micron technologies”, In proceedings of IEEE/ACM International Conference on Computer-Aided Design,

Nov 2000. pp 322-327.

13. J. F. Wakerly, “ Error correcting codes, self- checking circuits and applications”. Elsevier north-holland, Inc.,

New York, 1978.

14. A. Ganguly, P.P. Pande, and B. belzer, “ Crosstalk aware chammel coding schemes for energy efficience and

reliable NOC interconnects,” IEEE Trans. Very large scale integr. (VLSI) syst., vol. 17, no. 11, Nov. 2009, pp.

1626-1639.

15. C. Metra, M. Favalli, and B. Ricco. “ Self- checking detection and diagnosis scheme for transient, delay and

crosstalk faults affecting bus lines. IEEE trans. Comput., pp 560-574, june 2000.

16. D. Pamunuwa and H. Tenhunen. “ Repeater Insertion to Minimise delay in Coupled Interconnects”. In Fourteen

international conference on VLSI design, pp 513-517.

17. Madhu et al., “ Delay and Energy –Efficient Data Transmission for On-chip Buses,” In ISVLSI‟06, pp 355-360,

2006.

18. D. Rossi, S. Cavallotti, C. Metra. “ Error Correcting Codes for Cross talk Effect Minimization”, Processing of the

18
th

 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems.(DFT‟ 03).

19. D Rossi, V.E.S van Dijk, R.P Kleihorst, A.H. Nieuwland, C. Metra, “ Coding Scheme for Low Energy

Consumption Fault- Tolerant Bus”, Processing of the Eight IEEE International On-line Testing Workshop

(IOLTW‟ 02).

